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ABSTRACT

This paper illustrates that analysis corrections, when applied as a model tendency term, can be used to

improve nonlinear model forecasts and are consistent with the hypothesis that they represent an additive 6-h

accumulation of model error. Comparison of mean analysis corrections with observational estimates of bias

further illustrates the fidelity with which mean analysis corrections capture the model bias. While most

previous implementations have explored the use of analysis corrections to correct forecast biases in short-

range forecasts, this is the first implementation of the correction method using both a seasonal mean and

random analysis correction for medium-range forecasts (out to 10 days). Overall, the analysis correction–

based perturbations are able to improve forecast skill in ensemble and deterministic systems, especially in the

first 5 days of the forecast where bias and RMSE in both lower-tropospheric temperature and 500 hPa geo-

potential height are significantly improved across all experiments. However, while the method does provide

some significant improvement to forecast skill, some degradation in bias can occur at later lead times when the

average bias at analysis time trends toward zero over the length of the forecast, leading to an overcorrection

by the analysis correction–based additive inflation (ACAI) method. Additionally, it is shown that both the

mean and random component of the ACAI perturbations play a role in adjusting the model bias, and that the

two components can have a complicated and sometimes nonlinear interaction.

1. Introduction

Recent work by Bowler et al. (2017) proposed a novel

way to account for model error in an ensemble forecast.

In their work, which we will refer to as analysis

correction–based additive inflation (ACAI), an estimate

of model error is derived from an archive of analysis

corrections and added as a tendency term to the model

equations every six hours of the model integration.

The ACAI method assumes that analysis corrections

represent a reasonable approximation to the short-term

model error and on average that such corrections rep-

resent an approximation to the model bias. The origins

of the ACAI method can be traced back to Saha (1992)

where average differences between forecast and analysis

states are used to mitigate the development of model

biases in deterministic forecasts. In contrast to the ap-

plication of a systematic error term to correct model

biases, Batté and Déqué (2016) illustrate the utility of

using additive perturbations derived from randomly

sampled model error corrections to address bias in sea-

sonal forecasts of a global coupled model. Piccolo et al.

(2019) illustrate the utility of using random analysis in-

crements to account for model uncertainty in ensembleCorresponding author: william.crawford@nrlmry.navy.mil
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forecasts and present a comparison with other stochastic

methods (i.e., SKEB and SPT). Their results indicate

that the analysis increment method outperforms other

methods in terms of ensemble spread and reliability.

Both in deterministic and ensemble forecasts, the ACAI

method demonstrates added skill and reduced forecast

bias in short-term model forecasts. The method intro-

duced by Bowler et al. (2017) combines these prior ap-

plications to simultaneously address model bias and

model uncertainty.

In this paper, we further examine the applicability of

the ACAI method to error reduction in short-term

forecasts, but also, for the first time, up to 10-day

model forecasts. We investigate the performance of

ACAI in three operationally relevant settings: 1) An

ensemble prediction system (EPS) based on the en-

semble transform (ET) initial conditions (Bishop and

Toth 1999; McLay et al. 2010), 2) an EPS system based

on an ensemble of data assimilations (EDA) generated

by perturbing the assimilated observations [similar to

Houtekamer et al. (1996) and Kucukkaraca and Fisher

(2006)], and 3) a deterministic forecast system. All systems

use the Navy Global Environmental Model (NAVGEM)

atmospheric model.

We investigate several properties of theACAImethod.

We first evaluate the ability of analysis corrections to

approximate short-term model error computed from

observations (i.e., radiosondes; which are considered to

be minimally biased) followed by a structural description

of themean analysis corrections.We evaluate the impacts

of the ACAI perturbations on short and long-term error

in three forecast systems listed above, as well as, the in-

dividual impacts of the mean and random components of

the ACAI method on bias reduction in the ET-based

EPS.We conclude by discussing deficiencies of theACAI

method and suggest ways to improve the ACAI method

and the analysis system that generates the archive of the

perturbations.

2. Methods

a. Numerical model

NAVGEM (Hogan et al. 2014) is used in all of the

presented experiments at the T359 resolution (Gaussian

grid of 1080 3 540 grid points, ;37km equatorial reso-

lution) with 60 hybrid pressure levels in the vertical

(model top at 0.04hPa). It is a primitive equation, spectral

atmospheric model with a semi-Lagrangian/semi-implicit

dynamical core, a comprehensive set of physical param-

eterizations and an accompanying hybrid 4D-Var data

assimilation system (NAVDAS-AR; Kuhl et al. 2013;

Rosmond and Xu 2006; Xu et al. 2005). NAVGEM is the

global atmospheric NWP model used operationally by

the Fleet Numerical Meteorological and Oceanography

Center (FNMOC) for both ensemble and deterministic

forecasting.

b. Ensemble transform method

The first ensemble forecast system is based on initial

perturbations generated using the ensemble transform

(ET) method. Several experiments were conducted us-

ing the ET method described by McLay et al. (2008).

The ET generates ensemble perturbations through a

linear combination of short-term (6-h) forecasts under

the constraint of an estimated analysis error variance

produced by the NAVDAS-AR data assimilation sys-

tem. McLay et al. (2010) describe a local formulation of

the ET that enables a better fit of the analysis pertur-

bations to the analysis error constraints compared to the

global formulation in McLay et al. (2008). The local

formulation performs the linear transformations using

weighting matrices that are a function of latitude band,

and this formulation is employed in the presented ex-

periments. In each of the short 6-h ET-based ensem-

ble forecasts, the model is run 4 times daily at 0000,

0600, 1200, and 1800 UTC. For each initialization, a

20-member ensemble is integrated to the 6-h lead time

to produce the next set of ensemble initial conditions

via the ET.

c. Ensemble of data assimilations (EDA)

An additional ensemble forecast system is also tested

using an EDA-based system. The EDA presented here

is initialized using the method of perturbed observations

(Houtekamer et al. 1996; Kucukkaraca and Fisher 2006)

where perturbations are randomly sampled from the

observation error probability density function and added

to each variable. The analysis equation for each ensemble

member i then becomes

xai 5 x
f
i 1K

i
[(yo 1 j

i
)2H(xf

i )] , (1)

where xai and x
f
i are the analysis and forecasts states,

respectively; Ki is the Kalman gain matrix; and H is the

observation operator; ji ; N(0, R) are random pertur-

bations to the observations yo, drawn from the normal

distribution with zero mean and variance equal to the

observation error variance, R. The ensemble is then

comprised ofNe independent data assimilation runs that

differ at initial time according to the perturbed obser-

vations assimilated by each member. Each ensemble

member is run with the 6-h cycling NAVDAS-AR hy-

brid 4D-Var data assimilation system. Note that the

ensemble covariances used in the hybrid 4D-Var come

from anET ensemble (Kuhl et al. 2013) and not from the
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ensemble of data assimilations. Before testing the EDA

perturbations in the Hybrid DA, one would ideally like

to add a model error component to the EDA pertur-

bations that ensures their covariances are a good ap-

proximation to the forecast error covariance. The

ACAI model error study described here is viewed as a

stepping-stone toward that goal.

d. ACAI perturbations

We produce the ACAI perturbations using a 1-year

archive of analysis corrections from 2015. The archive

is generated from a series of deterministic NAVGEM

atmospheric reforecasts at the T359 resolution with

60 vertical levels. The reforecasts are initialized from

analysis states produced by the NAVDAS-AR system.

Because the perturbations will be added to the right

hand side of the forecast equations (i.e., as tendencies),

the archive is produced from differences between anal-

ysis and prior states at each model grid point as

dxa 5 xa(t)2M[xa(t2Dta)] , (2)

where xa(t) is an analysis state valid at time t and

M[xa(t2Dta)] is a 6-h forecast state produced by the

nonlinear forecast modelM using an analysis state valid

at t2Dta, where Dta is the length of the assimilation

window. This will produce analysis corrections at the full

model resolution as opposed to using the true analysis

corrections from theDA system, which are computed at a

reducedT119 resolution (;110kmequatorial resolution).

The reforecasts are initialized every 0000, 0600, 1200, and

1800 UTC producing analysis corrections 4 times per day.

The ACAI perturbations used during the ensemble

forecasts are computed in a similar fashion to those used

by Bowler et al. (2017) in that they are a combination

of a mean analysis correction and a randomly sampled

correction drawn from the archive. Perturbations to

surface pressure, temperature, humidity, zonal wind

speed, and meridional wind speed at each model grid

point are computed as

dx
i
5

1

N
s

�
Ns

k51

dxak 1a

 
dxari

2
1

N
e

�
Ne

j51

dxarj

!
, (3)

where the first term on the right-hand side represents a

3-month, seasonal average analysis correction centered

on the month of the forecast and is aimed at correcting

model bias; Ns is the total number of corrections in that

time period where a correction is computed every 6 h.

The second term is intended to be an added source of

stochastic perturbation during the forecast. For each

ensemble member i, a random sample is drawn from the

same 3-month time period used to compute the seasonal

average and is represented in (3) by dxari . Ne is the

number of ensemble forecast members, and the mean

of the Ne random samples is subtracted from the ran-

dom sample for each individual ensemble member (dxari)

before adding to the seasonal average component.

Following the work of Bowler et al. (2017), a scaling

term, a, is included in order to control the impact of the

random perturbations on the forecast and is set to 0.5 in

the presented experiments. The random portion of the

perturbations is intended to increase the spread of the

ensemble forecasts and is applied only in the ensemble

forecast experiments. The perturbations computed using

(3) are divided by the total number of time steps per 6-h

period of the forecast (Nt) and added as tendencies to the

model solution at each time step of the integration as

dx
i

dt
5 f (x

i
)1

dx
i

N
t

, (4)

where f(xi) is the tendency term of the prognostic

equation. A 6-min numerical time step is used in all of

the presented experiments giving a total of 60 time steps

per 6-h period. A new set of perturbations is computed

for each ensemble member for each 6-h portion of the

forecast. Figure 1 gives an example of what an ACAI-

based tendency term might look like in zonal wind,

temperature, and surface pressure for one ensemble

member at a random point on the globe over the length

of a single 10-day forecast. The total ACAI forcing

(mean plus randomly sampled correction) is indicated

by the red line and is shown to change every 6h of the

forecast. Themean component of the forcing is shown in

black and remains constant over the 10-day forecast.

While the second term in (3) is defined by random

samples from the archive of analysis corrections, as

noted in Piccolo et al. (2019) and indicated in Fig. 1, the

perturbations are constant and perfectly autocorrelated

(i.e., no decorrelation in time) over a 6-h period. The

black line in Fig. 1 would remain the same between all

ensemble members; however, the red line would differ

between members according to the random sample.

In the deterministic system, only the seasonal average

analysis correction [i.e., first term on the rhs of (3)] is used

to correctmodel biases during the forecast. It is a seasonal

(3 month) mean analysis correction and is applied as a

tendency at each model time step as in (4). In this setting,

the random component of the ACAI perturbations is set

to zero, and therefore the tendency added will be the

same at each time step throughout the entire forecast.

e. List of experiments

We designed our experiments based on three types of

forecast systems that are commonly used in operational
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centers, including theU.S. Navy’s operational forecast center

[the Fleet Numerical Meteorological and Oceanography

Center (FNMOC)]. The prime objective of these experi-

ments is not to compare the skill of the differing forecast

systems but to examine the effect of ACAI on each of them

individually. In the first system, the ET method is used to

create the initial ensemble perturbations. This method

tightly controls the average variance of the initial perturba-

tions. In the second system, the EDA method is used to

create ensembles of initial conditions. This method uses

perturbed observations and the initial spread of the ensem-

ble depends on a multitude of factors including the forecast

error covariance model of the data assimilation scheme and

the values of the assumed observation error variances. The

third system is a standard deterministic forecasting system.

Details of each experiment are summarized in the Table 1

with the further rationale described below.

ET-based EPS experiments with and without the ACAI

perturbations were conducted for two 1-month periods;

a boreal winter (15 December 2016–14 January 2017)

and summer (1–31 July 2016) period. At each 0000

and 1200 UTC for each day, a 20-member ensemble is

initialized and integrated out to 10 days. All ET-based

experiments use stochastic kinetic energy backscatter

(SKEB) as an additional source of stochastic error

representation. The ET-based ensembles are centered

on an external analysis from the NAVDAS-AR hy-

brid 4D-Var data assimilation system and are not part

of a cycling data assimilation system as in the EDA

experiments.

In the EDA-based EPS experiments, the same 1-month

winter period is used as in the ET-based ensemble. The

summer period was not repeated in these experiments due

to the similarity between the summertime and wintertime

results in the ET-based EPS experiments. Both EDA ex-

periments were run using 5 ensemble members, with

10 day forecasts issued at 0000 and 1200 UTC. While the

EDA-based EPS is not currently used operationally, the

FIG. 1. Example time series of the ACAI tendency perturbations to (a) zonal wind and

(b) temperature in the lower troposphere (;950 hPa) and (c) surface pressure at a single point

on the globe for one ensemble member over the length of a 10-day forecast. The black line

indicates the mean correction, and the red line represents the mean plus a random sample. For

reference, (a) and (b) also show the total model tendency in the same location as the pertur-

bation (blue circles).
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Navy is developing a global coupled ensemble fore-

casting system that uses an EDA configuration, moti-

vating an investigation on the impacts of the ACAI

method on an EDA type system. It is anticipated that

the global coupled ensemble system will likely be run

with fewer members than the operational ET-based

system, motivating the EDA-based system to be tested

with a reduced number of members.

To investigate the contribution of the mean and ran-

dom components of the ACAI perturbations on the

forecast, we rerun the summer ET-based experiments

with either the random (Table 1: ETacai0) or the bias

(Table 1: ETacaiR) component set to zero.

The initial conditions for the deterministic runs are

provided by a 6-hourly cycling hybrid data assimilation

system, where 5-day forecasts are initialized every

0000 and 1200 UTC. The deterministic experiments

span the wintertime period from 15 December 2016–

31 March 2017. Note that since our interest is in

comparing the three systems performances with and

without ACAI, our use of differing time periods and

forecast integration time for each experiment does

not affect this comparison.

In all ACAI-based experiments, the perturbations are

added throughout the entire length of all short and

extended-range forecasts. In the cycling data assimila-

tion systems (i.e., EDA and deterministic), because the

perturbations are included starting at analysis time, the

perturbations influence the background of the subse-

quent cycle potentially influencing the skill metrics at

initial time.

3. Results

a. Comparison of analysis corrections with an
observational estimate of bias

As described above, a key motivation for ACAI is the

assumption that seasonally averaged analysis correc-

tions are an approximation to the model bias. To ex-

amine the validity of this assumption more closely, we

compare an estimate of the bias based on radiosonde

observations with the mean analysis corrections. Figure 2

TABLE 1. List of experiments. ET/EDA experiments: Winter (15 Dec 2016–14 Jan 2017); Summer (1–31 Jul 2016). DET experiments:

Winter (15 Dec 2016–31 Mar 2017). N/A: not applicable.

Name Season Ensemble initialization Model error ACAI

ETctrl Winter/summer Ensemble transform SKEB N/A

ETacai Winter/summer Ensemble transform SKEB and ACAI a 5 0.5

EDActrl Winter Perturbation to obs None N/A

EDAacai Winter Perturbation to obs ACAI a 5 0.5

ETacai0 Summer Ensemble transform SKEB and ACAI a 5 0; bias only

ETacaiR Summer Ensemble transform SKEB and ACAI a 5 0.5; no bias

DETctrl Winter N/A None N/A

DETacai Winter N/A ACAI a 5 0; bias only

FIG. 2. Global mean profiles of background departures from radiosondes (red) and negative of analysis corrections at observation lo-

cations [H(xa) 2 H(xf)] (blue dashed) averaged over 15 Dec 2016–31 Mar 2017.
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shows globally averaged profiles of 6-h forecast depar-

tures from radiosonde observations over the period

15 December 2016–31 March 2017. The radiosonde

profiles are assumed unbiased, and therefore, the de-

partures are assumed to present a reliable estimate of

the bias in the background. Figure 2 also shows globally

average profiles of analysis corrections at the same lo-

cations as the radiosonde profiles (which are primarily

over the continental regions) over the same time period.

The average analysis corrections represent a negative

of the bias, and therefore the sign has been reversed in

Fig. 2. The two lines track well and show that the anal-

ysis corrections generally capture the sign of the bias.

However, the average analysis corrections consistently

underestimate the magnitude of the bias. Dee and Da

Silva (1998) discuss this point from a theoretical stand-

point and show that when forecast errors and observa-

tions errors are about equal, the analysis corrections

underestimate the bias by 1/2. It can, therefore, be ex-

pected that while the average analysis corrections will

reduce the forecast bias, it will not remove it entirely. It

should be noted that while themean analysis corrections

match well with the bias captured from radiosondes, this

does not necessarily mean the analysis corrections are

representative of the bias throughout the entire forecast.

To illustrate, Fig. 3 shows the bias in 500 hPa geo-

potential height as a function of forecast lead time in the

northern extratropics, southern extratropics, and tropics

(regions defined in appendix). The bias in northern ex-

tratropical geopotential height is fairly stable with a

positive bias throughout the entire forecast. The south-

ern extratropical bias, on the other hand, maintains a

fairly consistent positive bias through time, but de-

creases in amplitude and even switches sign slightly by

the end of the forecast. Bias in the tropics decreases

rapidly through the first 5 days of the forecast, switches

sign and is of equal negative amplitude by the end of the

forecast. Figure 3 illustrates that while the bias can be

fairly stable in one region, bias in another region may

evolve in a very different way. This complex evolution of

bias can be seen in other variables as well, and illustrates

that a short-term estimate of bias may not represent the

true model bias at longer lead times.

b. Structure of the average corrections

Before we examine the impact of ACAI on the model

forecasts, we find it instructive to examine the statistics

of the analysis corrections. Figure 4 shows an average

analysis correction to surface pressure over the winter

(DJF) and summer (JJA) time period of 2015. Average

analysis corrections are computed as the seasonal (3-month)

mean of the corrections computed in Eq. (2). In Fig. 4, red

means that the 6-h forecast of surface pressure is too low

whereas blue means that it is too high. The mean cor-

rection shows that, on average, the surface pressure of

the 6-h NAVGEM forecast is too low in the tropics and

too high in the extratropics. Also shown in Fig. 4 are

contours of the seasonal mean surface pressure, which

indicate a meridional pressure gradient from the tropics

to the midlatitudes. The average analysis correction will

then act to decrease the relatively high pressure in the

midlatitudes and increase the low pressure in the tropics,

potentially modifying the strength of the meridional

pressure gradient and the associated pressure driven

flow (i.e., easterly trade winds). There is also some

evidence of a land–sea gradient in the correction to

pressure, particularly in the tropical regions, which is

consistent with Bhargava et al. (2018) where they ex-

amine analysis corrections derived fromGFS. However,

in their case, the land–sea gradient in pressure appears

to be the dominant structure of the average pressure

corrections. Figure 4 illustrates little seasonality to the

general structure of the mean pressure corrections,

which is also consistent with the findings of Bhargava

et al. (2018). However, the largest negative increments

to surface pressure occur in the winter hemisphere with

the Northern (Southern) Hemisphere having largest

corrections in DJF (JJA).

As in the case of the mean surface pressure corrections

shown in Fig. 4, zonally averaged profiles of temperature,

specific humidity, zonal velocity and meridional velocity

(Fig. 5) exhibit a general consistency in the structure of

the increments between seasons, particularly in the case

of specific humidity. The zonally averaged temperature

(T) correction indicates that the 6-h forecast is generally

too warm in the lower troposphere with some slight

variation above ;600 hPa. A slight cold bias is also

FIG. 3. Ensemble mean bias of 500 hPa geopotential height as a

function of forecast lead time (hours) in the northern extratropics

(NE; triangles), tropics (TR; circles), and southern extratropics

(SE; squares) in the ET-based control experiment (ETctrl).
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evident in the upper troposphere (;200hPa) of the

summer hemisphere. Specific humidity (Q) contains a

dry bias in the tropical regions below 600hPa with the

largest magnitude adjustments focused along the equa-

tor. Figures 5c,g and 5d,h show the mean analysis cor-

rection for the zonal (U) and meridional (V) component

of the wind velocity with contours of the average total

analysis velocity overlaid. The mean flow contours in

Figs. 5c and 5g illustrate the easterly component of the

surface level trade winds with negative (dashed line)

contours between 308S and 308N. In Figs. 5c and 5g, red

(blue) colors indicate a correction that increases the

westerly (easterly) component of the wind. Since the

mean correction is increasing the westerly component

in a region where the mean is easterly, the mean cor-

rection is actually decreasing the strength of the easterly

trade winds. As in the case of the mean increment to

surface pressure shown in Fig. 4, the largest magnitude

correction to the surface level winds occurs in the winter

hemisphere. In Figs. 5d and 5h, red (blue) colors indicate

corrections that increase the northward (southward)

component of the meridional wind. The low-level mean

meridional wind contours on Figs. 5d and 5h are con-

sistent with Hadley’s simple model of low-level tropical

convergence. Specifically, it indicates a low-level flow

toward the equator between 308S and 308N and below

;600 hPa, and the upper-level flow away from the

equator at 200 hPa at these same latitudes. While the

mean correction to the meridional winds exhibits a

complex structure, many of the largest amplitude ad-

justments occur in the vicinity of the upper and lower

branches of this Hadley-like circulation, particularly in

the Northern Hemisphere. Comparison of the mean

analysis and prior (or background) state (not shown)

indicates the large amplitude positive and negative ad-

justment to the upper-level divergent flow centered at

158N and 200hPa is primarily due to a downward shift in

altitude of the northward flow. Similarly, the adjustment

(centered at 158N and 700hPa) to the equatorward flow

is primarily caused by an upward and northward shift in

FIG. 4. Mean (a) winter (DJF 2015) and (b) summer (JJA 2015) analysis corrections to surface pressure (color).

Seasonal averages of analysis surface pressure (contours).

FIG. 5. Zonal averages of mean (a)–(d) winter (DJF 2015) and (e)–(h) summer (JJA 2015) analysis corrections to (a),(e) temperature

(8C), (b),(f) humidity (kg kg21), (c),(g) zonal wind speed (m s21), and (d),(h) meridional wind speed (m s21). Contours on (c), (d), (g), and

(h) represent mean analysis velocity. Positive (negative) direction indicated by solid (dashed) lines. Contour interval is 3 (0.5) m s21 in

U (V).
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the equatorward flow. Figures 5d and 5h show that the

Hadley-like circulation strengths in the winter hemi-

sphere, as does the magnitude of the corrections to the

circulation. Simpson et al. (2018) found similar struc-

tures in the boreal winter average of analysis corrections

to the wind in the ERA-Interim reanalysis (Dee et al.

2011). However, while Simpson et al. (2018) shows a

coherent increase in the convergent portion of the Hadley

cell by themean analysis correction toV (surface–600hPa),

the mean NAVGEM correction indicates a sign reversal

below ;900hPa with the mean near-surface correction

acting to reduce convergence (Figs. 5d,h).

Figure 6 showsmaps of seasonally averaged 10mwind

speed corrections (magnitude and direction). The di-

rection of the mean correction is in opposition to the

direction of the tropical trade winds, also evident as a

negative correction to the wind speed magnitude. There

is also some evidence for average increases to the wind

speed, particularly along the equator in the eastern

Pacific and Atlantic Ocean and in the northeastern

North Pacific. The magnitude of the corrections the

winds speed is again largest in the winter hemisphere.

c. Impact of ACAI on short-term forecast scores

Here we compare the performance of forecasts using

the ACAI perturbations to control experiments without

the perturbations. All metrics, regions and variables are

defined in the appendix. We find that ACAI has an

overall positive impact on short-term (0–5 days) fore-

cast scores in all experiments: ETacai, EDAacai, and

DETacai. All three systems see reduction in both bias

(Fig. 7, top) and the RMSE (Fig. 7, bottom). Changes in

bias are computed as

1003
jexperimental biasj2 jcontrol biasj

jcontrol biasj ,

where j j represents the absolute magnitude of the bias.

Differences in RMSE between the experiments are also

computed as percent changes. The maximum change

denoted in bias and RMSE in Fig. 7 are 100% and 10%,

respectively; however, the actual change in RMSE may

be larger than 10% and the degradation in bias may be

larger than 100%. In Fig. 7, a 100% improvement in bias

scorecard indicates the average bias has been forced

to zero in the ACAI-based forecast. The largest posi-

tive impact is on 500hPa geopotential height (Z500)

scores and lower-tropospheric temperatures (T850).

The global 5-day average reduction in Z500 bias in the

three systems (ETacai, EDAacai, and DETacai) is 37%,

35%, and 23%, respectively. For T850, the reduction for

the 5-day average bias is 50%, 49%, and 27%. The av-

erage global improvement to RMSE in Z500 (T850) is

6%, 7%, and 3% (3%, 6%, and 4%). Improvements to

Z500 and T850 are consistent across all experiments and

regions, except in the deterministic system where trop-

ical biases are only marginally improved. Tropical sur-

face conditions are also improved across all experiments

with a reduction of bias in 10m wind speeds (W10m:

17%, 24%, and 31%) and 2m air temperature (T2m:

9%, 29%, and 10%). The RMSE of W10m is reduced

by;3% in each experiment and T2m is reduce by;2%

in the ETacai and DETacai experiments, while the

EDAacai experiment saw amuch large reduction (;7%).

Note, the perturbations used in the ETacai and EDAacai

experiments contain both a mean and random compo-

nent, whereas the DETacai experiment perturbations

only contain the mean correction which is likely respon-

sible for the generally larger impact of the ACAI pertur-

bations in the ensemble systems.

Some variables did show significant degradation in

scores in the first 5 days, particularly in the case of the

EDA-based system. Figure 7e shows that northern ex-

tratropical 2m air temperature RMSE scores are de-

gradedby;6%andFig. 7b indicates a substantial increase

(;100%) occurred in southern extratropical 10m wind

speed bias. However, the bias in southern extratropical

10m wind speed in the EDActrl experiment is only

FIG. 6. Mean (a) winter (DJF 2015) and (b) summer (JJA 2015) analysis corrections to 10m wind speed. Direction

(vectors) and magnitude/sign (color, m s21).
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;0.02m s21 on average over the first 5 days, therefore

this only represents a modest increase in wind speed bias.

Overall, degradations in ETacai are not as great as for

EDAacai while DETacai is almost free of degradations.

The relative impact of each component of the ACAI

perturbations (mean and random) on bias correction in

the ensemble systems is explored further in section 3e.

d. Impact of ACAI on extended-range forecast scores

We find that in the extended-range forecasts (days

5–10), the ACAI perturbations continue to improve

RMSE scores for most variables/experiments. All

EDAacai RMSE scores are improved by an average of

3% across all variables/regions with the largest impact

occurring in the tropics (Fig. 7e). In the ETacai experi-

ment, RMSE scores continue to be improved for most

SE and TR variables (except for TR Z500), but are de-

graded for most of the NE variables (though several of

these are shown to fall below the 95% significance

threshold).

We also find that several of the bias scores that are

positive in the short range, are degraded in the extended

range. For example, in the ETacai experiment, T850

biases in all regions switch from improved to degraded

after day 5. A similar switch from improved to degraded

biases is also present in TR and SE Z500. While many of

the large amplitude degradations in bias fall below the

significance threshold, a near equivalent number do not,

FIG. 7. Scorecards showing percent change in (top) bias and (bottom)RMSE for (left) ETacai, (middle) EDAacai, and (right) DETacai

for winter 2017 period compared to control experiments. Green (purple) circles represent improvement (degradation). Gray shading and

bold outline represents statistical significance at the 95% level. Circle size maximum for bias (RMSE) is 100% (10%). Scores for

individual variables (see the appendix) shown on the vertical axis with forecast lead time on the horizontal axis. For context, the

true values of each metric from the control experiment at initial and final lead time are shown at the outside right of each line of the

scorecard. All scores computed against ECMWF analyses.
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warranting further exploration. Figure 8a shows lower-

tropospheric (850 hPa) bias in the southern extratropics

for the ETctrl and ETacai experiment. The figure illus-

trates that the ACAI perturbations are improving the

temperature bias as intended in the first half of the forecast;

however, the bias is being pushed through zero increasing

the magnitude of the bias at later lead times. We find that

this mechanism is responsible for most of the degradations

in bias at later lead times of the ET-based experiments.

With the exception of NE 10m wind speed, NE and

TR biases in the EDAacai experiment continue to be

improved relative to the control in days 5–10. However,

there is a significant degradation in bias for the SE re-

gion. The cross-over from improved to degraded biases

is similar to that experienced in ETacai; however, the

problem experienced in the ETacai experiment illus-

trated in Fig. 8a is exacerbated by the fact that the initial

time biases are improved in the EDAacai experiment

(Fig. 8b). The EDA experiments are based on cycling of

individual members, and since the ACAI perturbations

are added starting at analysis time, the perturbations have

the potential to affect the background of the subsequent

cycle and reduce the bias at initial time. In contrast, ET

initial biases are fixed because the ET ensemble is cen-

tered on an external analysis that did not use ACAI. The

reduction in the area-averaged bias at initial time places

the EDAacai ensemble closer to zero, and therefore the

trend toward negative bias results in a degradation at

later lead times.

It should be noted that while Fig. 7b indicates im-

provement in the bias metric for SE T850, comparison

with Fig. 8b indicates that ACAI is doing very little to

slow down the cold-bias tendency in the model. In which

case, the positive impacts to bias shown in the scorecard are

due almost entirely to the impact ACAI has at initial time

and less to do with the reduction of bias throughout the

forecast. This behavior appears most pronounced in the

southern extratropical temperature and geopotential height

fields. On the other hand, ACAI appears quite capable of

altering bias trends in other region/variable combinations as

shown by the changes to bias throughout the forecast inNE

Z500 and SE W250 in Figs. 8c and 8d, respectively.

e. Impact of ACAI on the ensemble spread

We find that ACAI improves the ensemble variance

over ensemble mean squared error (MSE) ratio (s2/MSE)

FIG. 8. Ensemblemean bias as a function of forecast lead time (hours) for the control (triangle) andACAI-based

(circle) experiments in the ET-based [(a) southern extratropical 850 hPa air temperature] and EDA-based [(b)

southern extratropical 850 hPa air temperature, (c) northern extratropical 500 hPa geopotential height, and

(d) southern extratropical 250 hPa wind speed] systems.
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of the EDAacai relative to the control for all combina-

tions of variable/region/lead time. Increases in spread

(Fig. 9b) are as large as 30%–50% for many northern

extratropical and tropical variables out to ;6 days and

this increase in the spread of the EDAacai experiment

contributes to an improved spread–skill ratio of the

EDAacai (Fig. 9d). Note, changes in the MSE can also

influence the spread–skill relationship and should be

considered in conjunction with ensemble spread when

looking at changes in variance ratio (VARR) shown in

Figs. 9c and 9d. While ACAI does contribute signifi-

cantly to the spread of the ensemble, as described

in Bowler et al. (2017), ACAI alone is insufficient

to achieve skillful ensemble spread statistics for the

EDAacai experiment and has therefore been combined

with ‘‘relaxation-to-prior’’ methods to further improve

the spread–skill relationship. Initial testing using the

method of relaxation to prior perturbations (RTPP;

Zhang et al. 2004; Whitaker and Hamill 2012) in our

EDA-based EPS results in further improvement in

spread–skill of the ensemble (not shown). The combi-

nation of RTPP and ACAI is particularly useful in

generating additional spread in the EDA system since

relaxing toward the forecast (or prior) perturbations will

allow some of the variance introduced by ACAI in the

first 6 h of the forecast to affect the subsequent cycle.

ACAI has a considerably smaller impact on the

spread of the ET ensemble (Fig. 9a; Note, the maximum

representable value of change in spread for Fig. 9a is

5%, compared to 50% in Fig. 9b.) In fact, while the

impacts are quite small (21% on average), the spread in

many variables is actually reduced by ACAI. We attri-

bute the lack of additional growth in spread of the

ETacai ensemble to the amplitude and dynamical con-

ditioning of the ET initial conditions. Not only are the

perturbations added by the ET much larger than those

added by ACAI, the ET is specifically formulated to

isolate the fastest growing modes of variability whereas

ACAI is not. For these reasons, the perturbations added

by ACAI will likely be overwhelmed by the perturba-

tions added by the ET. Slightly less clear is the reduction

of spread in the ETacai experiments; however, a likely

reason for this is the consistency guaranteed by the ET

between the ensemble perturbation variance and analysis

error variance across the entire state vector. Localized

modification of the forecast variance byACAI can lead to

an adjustment of the ET perturbations between experi-

ments, potentially in a manner that reduces the ensemble

variance.

f. Impact of individual ACAI components on bias

As described in section 2a, the additive perturbations

defined by (3) are comprised of two terms; a seasonal

average analysis correction and a random component

derived from a random sample from the analysis cor-

rection archive. To investigate the relative contributions

of each term on the correction of bias, additional tests

were run using only the seasonal average or the ran-

domly sampled correction. These experiments were

conducted for the summer period only using the ET

system and are listed in Table 1 as ETacai0 (bias only;

a 5 0) and ETacaiR (random only). We find that the

relative impact of each component is variable depen-

dent. Figure 10 illustrates the reduction of bias at day 10

in each experiment relative to the control (ETctrl) and

shows that the random component of the ACAI per-

turbations is more effective at reducing bias in 850 hPa

(;50%) and 2m air temperature (;28%), while the

mean component is more effective in 250mb (;55%)

and 10m wind speeds (;50%). It should be noted that,

as indicated by Fig. 1, the random component of the

ACAI perturbations are often much larger than the

mean component. This is illustrated by the fact that, in

Fig. 1, the distance between the horizontal black line and

zero is oftenmuch smaller than the distance between the

black and varying red line. Following the work pre-

sented in Berner et al. (2017), strong additive noise can

be expected to adjust the mean state of a nonlinear

system, and therefore, given the relative amplitude of

the random portion of the ACAI perturbations, one

would expect some effect on the mean state.

It is less obvious that the random component of the

ACAI perturbations would affect the bias in the same

way as the mean component of the ACAI perturbations.

As demonstrated in Fig. 8a, when the baseline system

contains a bias at initial time and tends toward zero over

the length of the forecast, the ACAI perturbations often

end up overcorrecting the bias resulting in an increase in

the magnitude of the bias at later lead times. This con-

cept is further illustrated in Fig. 11a, which shows NE

Z500 bias in the four summertime ET experiments

(ETctrl, ETacai, ETacai0, and ETacaiR). The baseline

ET experiment (ETctrl) and the full implementation of

ACAI (ETacai) are shown by the triangles and circles,

respectively. With the addition of the ACAI perturba-

tions containing both the mean and random component,

the bias is driven through zero resulting in a substan-

tially larger bias at the 240-h lead time. Also shown in

Fig. 11a are the Z500 biases in the experiments using

only the bias (squares) and random (diamonds) com-

ponents of the ACAI perturbations. While both the

mean and random component of the ACAI perturba-

tions are contributing to the effect of running through

zero in the ETacai experiment (circles), it is clear that

the random perturbations are having a larger effect than

themean component. Thus, while the random portion of
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FIG. 9. Scorecards showing percent change in (top) ensemble spread and (bottom) variance ratio (s2/MSE) for

(left) ETacai and (right) EDAacai for winter 2017 period compared to control experiments. Green (purple) circles

represent improvement (degradation). Gray shading and bold outline represents statistical significance at the 95%

level. Circle size maximum for ETacai (EDAacai) spread is 5% (50%). Circle size maximum for VARR is (20%).

Scores for individual variables (see appendix) shown on the vertical axis with forecast lead time on the horizontal

axis. For context, the true values of each metric from the control experiment at initial and final lead time are shown

at the outside right of each line of the scorecard.
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the perturbations has the potential to have a larger

positive impact on the bias (Fig. 10), they also have the

potential to contribute to an overcorrection of the bias

(Fig. 11a).

In the case of Z500 bias shown in Fig. 11a, the mean

and random component of the ACAI perturbations are

correcting the bias in the same direction; however, the

relative impacts on tropical T850 bias shown in Fig. 11b

illustrates that this is not always the case. Here the mean

and random components are affecting the bias in op-

posing directions with the mean component (squares)

acting to increase the bias relative to the control (tri-

angles). Interestingly, the combination of the two com-

ponents (circles) results in the smallest T850 bias overall.

Figure 11 illustrates the complicated (and sometimes

nonlinear) interaction between the mean and random

components of theACAI perturbations on correcting the

bias and suggests more effort needs to be place on un-

derstand this interplay in order to arrive at the best pos-

sible implementation.

g. Impact of ACAI on mean correction in the
deterministic system

Figures 7c and 7f indicate a consistent reduction in

bias and RMSE by the bias only component of the

ACAI perturbations applied in the deterministic system.

In the extratropics, the reduction in bias is most pro-

nounced in Z500 and T850. Figure 12 gives an illustra-

tion of the reduction of Z500 bias by showing the actual

bias in the DETctrl and DETacai experiments. The

largest reduction in bias occurs in the northern and

southern extratropics and can be on the order of 10m at

days 3 and 5. Figure 7c indicates that in the tropical re-

gion, the largest reduction in bias is for 10m wind speed

at all forecast lead times. To illustrate the localized

effects of ACAI on 10m wind speed bias, Fig. 13 shows

the difference in the absolute magnitude of 10m wind

speed bias in the DETctrl and DETacai experiments,

and shows that the reduction is mostly centered in the

tropical regions and can be reduced up to ;1.25m s21.

Last, it is expected that if the application of the av-

erage analysis correction during the forecast is indeed

reducing bias over the first 6-h period of the integration,

then the resulting prior for the next cycle should be

closer to the observations compared to the control case.

We would then expect the data assimilation system to

produce smaller corrections to the prior on average.

Figure 14 shows globally averaged profiles of the cor-

rections made to temperature, specific humidity, zonal

winds (U), and meridional winds (V) over the entire ex-

tent of the experimental period, and indicates an across

the board reduction in the magnitude of the corrections

made by the DETctrl case versus the DETacai case. The

magnitude of the corrections is reduced by ;19% on

average with a maximum reduction of ;30%–35%.

As noted in section 2e, the time period of the deter-

ministic runs are extended relative to the ensemble runs;

however, the results remain relatively unchanged if

FIG. 10. Percent reduction in day-10 bias in ETacai (green),

ETacai0 (bias only; blue), and ETacaiR (random only; orange)

experiments. Reduction computed as change relative to ECMWF

analyses from ETctrl to ACAI-based experiments.

FIG. 11. Ensemble-mean bias as a function of forecast lead time

(hours) in the (a) northern extratropical 500 hPa geopotential

height and (b) tropical 850 hPa temperature in the ETctrl (trian-

gle), ETacai (circle), ETacai0 (bias only; square), and ETacaiR

(random only; diamond) EPS experiments.
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analysis of the deterministic results are performed over

the same time period as the ensemble runs but are less

statistically robust.

4. Summary and conclusions

Much of the presented analysis is predicated on the idea

thatmean analysis corrections are a valid approximation of

model bias. Our comparison of estimated model biases

from analysis corrections with measured bias computed

using radiosondes suggests that average analysis correc-

tions correctly capture the sign of the bias for 6-h forecasts,

but that they are generally an underestimate of the true

bias. This is in agreement with the theoretical result first

shown by Dee and Da Silva (1998) and suggests that the

relationship between model bias and mean analysis

corrections is fairly insensitive to model and data as-

similation scheme. It should be noted that while the

average analysis corrections match well with the ob-

served bias, the similarity is representative of short-

term (6 h) model bias and may not match the model

biases at extended lead times. This point is demon-

strated in Fig. 3, which shows that model bias can

change in amplitude or even sign as a function of

forecast lead time. In which case, the bias correction

component of the ACAI perturbations may not be

valid for some combinations of region, variable and

forecast lead time.

Despite the apparent underestimate of the systematic

error by average analysis corrections, we find that ACAI

improved short-term (0–5 days) bias scores in all three

experiments. In the ensemble-based experiments, we

FIG. 12. Zonal averages of 500 hPa geopotential height bias in meters at days 1, 3, and 5 from

deterministic DETctrl (blue) and DETacai (red) experiments.

FIG. 13. Difference in magnitude of 10mwind speed bias in deterministic forecasts at day 1, 3, and 5 jDETacaibiasj2 jDETctrlbiasj. Blue
(red) colors indicate an improvement (degradation) to the bias.
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find that rectification of the mean error by the random

portion of the ACAI perturbations is as important as

the mean correction for temperature and geopotential

scores, but is not as important for wind scores. The

random portion of the ACAI perturbations is shown to

be as large as or larger than the mean component,

helping to explain the impact of the random portion on

the mean state. The addition of ACAI also leads to a

reduction of the RMSE over the entire length of the

ensemble (10 days) and deterministic (5 days) forecasts

for most variables and regions. TheACAI perturbations

had relatively little impact on the ensemble spread in the

ET system; however, the result may be somewhat an-

ticipated given that the ET-based EPS initializes from

dynamically conditioned initial conditions that have

an amplitude and growth characteristics that can easily

overwhelm any additional growth added by the ACAI

perturbations.On the other hand, theACAI perturbations

are shown to have a significant positive impact on the

spread–skill of the EDA system, which has no prior

method to account for model uncertainty, as well as,

being run with unconditioned ensemble members, fur-

ther explaining the disparate impacts of ACAI on the

ET and EDA systems.

We also document shortcomings of ACAI in its

present form. Specifically, we find that ACAI sometimes

overcorrected bias after;5 days of the forecast, leading

to the degradation of some of theNWP scores at 10 days.

It is shown that both the mean and random portion of

the ACAI perturbations contribute to this effect, with

the random portion likely playing a larger role. Some

portion of the bias degradation is likely also due to a

mismatch in the sign of the bias at early versus later lead

times causing the ACAI perturbations to increase the

magnitude of the bias at the later lead times. In order for

the ACAI method to be implemented at extended time

FIG. 14. Global mean profile of absolute magnitude of temperature (T), humidity (Q), zonal

velocity (U), and meridional velocity (V) analysis corrections. DETctrl (solid); DETacai

(dotted).
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scales, this issue would most certainly need to be re-

solved and suggests that it might be appropriate to use a

forecast lead time dependent version of the ACAI

method. Furthermore, we illustrate a complicated and

sometimes nonlinear interaction of the mean and ran-

dom components of the ACAI perturbations in cor-

recting the forecast bias, lending weight to a need for

further experimentation to understand and control the

interplay in a way to maximize the impact.

To help synthesize the positive and negative impacts

of ACAI on the various systems and metrics analyzed,

below is a list of the more salient findings.

d Except for the southern extratropics in the EDAacai

experiment, day 0–5 bias and RMSE scores are gener-

ally improved by ACAI in the ensemble experiments.
d Degradations of bias in temperature and geopotential

height at later lead times of the ETacai experiment are

primarily driven by an acceleration of the model bias

tendency (cf. Fig. 8a).
d Degradations of bias in southern extratropical tem-

perature and geopotential height at later lead times of

the EDAacai experiment are primarily driven by a

reduction of initial time biases and an inability of

ACAI to rectify the model bias tendency (cf. Fig. 8b).
d Day 5–10 RMSE scores continue to be improved for

many region/variable combinations in the ensemble

systems, especially in the EDA experiments.
d In the ET-based system, the ACAI perturbations

provide no additional growth of ensemble spread

and can even act to reduce it. This is likely due to the

ET perturbations overwhelming the growth added

by ACAI and feedback on the ET perturbations

between cycles.
d The ACAI perturbations have a large positive impact

on spread–skill relationship in the EDA-based system.
d In the deterministic system, bias and RMSE scores are

improved by ACAI for nearly all region/variable

combinations.

It should be noted that while methods such as ACAI

present a potential means to minimize systematic

model errors, these methods do not render model de-

velopment unnecessary. Rather, examination of the

true model biases without the use of ACAI or other

online bias correction methods must be conducted

periodically (especially as upgrades are made to the

model) to help identify and possibly eliminate sources

of model error.

As mentioned in section 2e, the Navy is currently

developing a fully coupled ensemble forecasting system,

and this development helped motivate the need to ex-

plore the use of ACAI in an EDA system. While the

implementation here only explores the correction of

biases in the atmosphere, when implemented in a cou-

pled system, ACAI has the potential to arrest the de-

velopment of the feedback loops between biases in the

ocean and atmosphere. This is the subject of ongoing

research at the Naval Research Laboratory and will be

presented in future publications.
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APPENDIX

Scorecard Metrics

Scorecard metrics are computed for three regions:

northern extratropics (NE; 208–908N), tropics (TR; 208N–

208S), and southern extratropics (SE; 208–908S). For each
region, we focus on five variables at varying atmospheric

geopotential heights. These include: 2-m air temperature

(T2m), 10-m wind speed (V10m), 850hPa air tempera-

ture (T850), 500hPa atmospheric heights (Z500), and

wind speed at 250hPa (V250).

a. Bias and root-mean-squared error (RMSE)

1-degree gridded fields are output from the NAVGEM

control and experimental model runs, and bias and

RMSE are computed at each 24-h lead time against an-

alyses from the European Centre for Medium-Range

Weather Forecasts (ECMWF) provided by the TIGGE

archive. Over a particular region, the bias and RMSE are

computed as
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where Np is the number of points in the region; xp and

yp are the ensemble mean and value of the ECMWF

analysis at point p, respectively; and Øp is a weighting

applied according to the cosine of the latitude at point p.

Bias and RMSE at each forecast lead time are averaged

across all available forecasts.

b. Ensemble spread and variance ratio (VARR)

Over a particular region, the spread in the ensemble is

computed as
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where N is the number of ensemble members; Np is the

number of points in the region; xmp and xp are the value of

ensemble memberm and the ensemble mean at point p,

respectively; and Øp is a weighting applied according to

the cosine of the latitude at point p. The variance ratio

(VARR) is then the ratio of the squared ensemble

spread (s2
e) to the bias corrected mean squared error.

Spread and VARR at each forecast lead time are aver-

aged across all available forecasts.
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